Materials

Washington, DC—Silicon is the second most-abundant element in the earth's crust. When purified, it takes on a diamond structure, which is essential to modern electronic devicescarbon is to biology as silicon is to technology.

High Pressure, Materials

Washington, DC— Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule.

High Pressure, Materials

Washington, DC— A team including Carnegie’s Malcolm Guthrie and George Cody has, for the first time, discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymer fibers.

High Pressure, Materials

Washington, DC — A team of scientists led by Carnegie’s Lin Wang has observed a new form of very hard carbon clusters, which are unusual in their mix of crystalline and disordered structure. The material is capable of indenting diamond.

High Pressure, Materials

Washington, DC—New research shows that a remarkable defect in synthetic diamond produced by chemical vapor deposition allows researchers to measure, witness, and potentially manipulate electrons in a manner that could lead to new “quantum technology” for information processing.

High Pressure, Materials

A research team from the Geophysical Laboratory, including Oleksandr Kurakevych, Timothy Strobel, Duck Young Kim and George Cody, has reported the synthesis of an ionic semiconductor, Mg2C, under high-pressure, high-temperature conditions, which is fully recoverable to ambient conditions.

High Pressure, Materials

Washington, DC— Hydrogen is deceptively simple. It has only a single electron per atom, but it powers the sun and forms the majority of the observed universe. As such, it is naturally exposed to the entire range of pressures and temperatures available in the whole cosmos.

High Pressure, Materials

Washington, DC—Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. This phenomenon can only be found in certain materials under specific low-temperature and high-pressure conditions.

High Pressure, Materials

Washington, DC, 19 June 2013--Using novel high-pressure x-ray techniques, Geophysical Laboratory scientists Li ZhangYue Meng (HPCAT), Wenge Yang (HPSync), and Ho-kwang Mao, along with CDAC Partner Wendy Mao (Stanford) and colleagues from the University of Chicago have obtained the very first single-crystal structure of (Mg,Fe)SiO3 postperovskite phase under high pressure corresponding to the condition in the Earth’s D′′ layer.

High Pressure, Materials

Washington, DC—Hydrogen is the most abundant element in the universe. The way it responds under extreme pressures and temperatures is crucial to our understanding of matter and the nature of hydrogen-rich planets.

 

Pages